
aCe C Language Reference 1

aCe C
Language Reference

John E. Dorband
NASA Goddard Space Flight Center

Greenbelt, MD 20771

Introduction
This document is an introduction to the language aCe C. aCe stands for

architecture-adaptive computing environment. aCe C is a superset of ANS C. In this
document, the term aCe will be used synonymously for aCe C. This description of aCe
C assumes that the reader is knowledgeable of ANS C. The purpose of aCe is to
facilitate the writing of parallel programs. This is done by allowing the programmer to
explicitly describe the parallelism of an algorithm. The concepts behind aCe C have
been gleaned from such parallel languages as APL3, DAP Fortran7, Parallel Pascal4,
Parallel Forth1, C*5, CM Lisp6, FGPC2, and MPL8.

Typically, a C program has one thread of execution. This is the path that a
computer takes through a program while executing it. More sophisticated compilers
and run time environments may be able to infer from the code which portions of the
execution thread may be performed concurrently without conflict. However, it is very
difficult to perform this task automatically. aCe allows the programmer to explicitly
express that which can be performed concurrently, i.e. the parallelism, thus eliminating
the need for a compiler to second-guess the intents of the programmer.

Basics
The following is a valid aCe program. Note that it looks no different from a

standard C program:
int main (int argc, char **argv) {

printf(“Hello World\n”);

}

The difference is that C has only one thread of execution. aCe, however, may have
many threads of execution. Each thread may be referenced by name and index. The
‘Hello World’ program’s thread is implicitly named ‘MAIN’. This is important when it
is necessary to communicate between the ‘MAIN’ thread and other threads executing
concurrently with the ‘MAIN’.

aCe C Language Reference 2

Parallelism in aCe is expressed by first defining a set of concurrently executable
threads. A group of parallel threads can be viewed as a bundle of executing threads, a
cluster of processes, or an array of processors. These three views will be treated
synonymously. In aCe, a bundle of threads is defined with the ‘threads’ statement. The
following statement only declares the intent of the programmer to use 10 concurrent
threads of executions named ‘A’ at some point in his code:

threads A[10];

These threads must be assigned storage before they can execute any code. Each
thread will have its own private storage. Variables of a thread can not be accessed
directly by any other thread. In aCe, there is no global storage, only storage local to
each thread. Storage is declared for a thread by a standard C declaration preceded by
the thread’s name. All threads of a bundle will be allocated space for any given
declaration. The following statement allocates an integer ‘aval’ for each of the 10
threads previously defined as bundle ‘A’:

A int aval;

Once storage has been assigned to a thread, then code may be written that will be
executed by the thread. The following is a simple piece of code that adds the ten values
of val2 to the ten values of val3 and stores the ten results in the ten locations of val1:

threads A[10];

A int val1,val2,val3;

int main () {

A.{

val1 = val2 + val3 ;

}

}

Granted, the values of val2 or val3 were never initialized, but that is a different
issue. The important point here is that execution started with the function ‘main’ by the
default thread ‘MAIN’, which transferred control to (forks) the 10 threads of ‘A’ to add
the values of val2 to the values val3 before returning control to ‘MAIN’. For
parallelism to be useful, the storage of each thread must contain different values. This
can be done by different means: 1) read different values into the storage of each thread,
2) copy a built-in value that is unique to each thread into the storage of the thread, or 3)
obtain a unique value from another thread. In the first, case the function ‘fread’ may be
used to read values into the storage of a thread.

A.{ fread(&val2,sizeof(val2),1,file); }

aCe C Language Reference 3

The above fread in the context of the threads of A will read 10 values from the input
file and put them in the 10 locations of val2 of the 10 threads of A. The second way of
putting a unique value into each of the 10 locations of val2 would be to assign a built in
value to val2.

A.{ val2 = $$i ; }

The above statement will assign the value of the built-in value ‘$$i’ to val2. The
value of ‘$$i’ is the index of the thread. In the case of A, each thread will have a
unique index from 0 to 9.

Previously, it was pointed out that a thread only has direct access to storage local to
itself. A thread, however, can access storage of another thread indirectly through
communication operations. There are two basic communication operations. Under
other parallel programming paradigms they are referred to as ‘get’ and ‘put’ operations.
The following is an example of an aCe ‘get’ operation:

A.{ int a,b;

a = A[($$i+1)%$$N].b ;

}

In this example, the value of ‘b’ is fetch from one thread of A to another thread of
A. Remember that the value of $$i is the index of the executing thread and that $$N is
the number of threads in the bundle A. Thus the value of (($$i+1))%$$N) is the index
of a thread other than the thread performing the ‘get’ operation. The communication
operation uses this value to determine which thread to fetch the value of ‘b’ from. The
following statement is an example of an aCe ‘put’ operation:

A.{ int a,b;

A[($$i+1)%$$N].b = a ;

}

In this example, the value of ‘a’ of the current thread is stored into ‘b’ of a different
thread of A.

In summary, aCe allows the programmer to declare a bundle of parallel threads of
execution, allocate the storage of each thread, define code to execute on threads
concurrently, and move values between threads. These are the four essential concepts
of aCe: execution, storage, code, and communication.

Bundles of threads
In the previous section, the bundle A was declared as a one-dimensional array of

threads. A bundle may actually be declared with any number of dimensions. The

aCe C Language Reference 4

following statement declares the bundle B to have three dimensions of sizes 2, 7, and
20 respectively and contain 280 threads:

threads B[2][7][20] ;

One may also declare bundles of bundles of threads. In the statement below, ‘e’ is a
bundle of bundles of threads. ‘e’ consists of 100 bundles, each containing 2 bundles,
one with 10 threads and the other with 20 threads. One should view each bundle of ‘e’
as 1 e-thread, 10 c-threads, and 20 d-threads, where the e-thread is the parent thread of
the 10 c-threads and 20 d-threads. Thus, there are a total 3,100 threads defined by the
following statement:

threads { c[10], d[20] } e[100] ;

Because the definition of a bundle is recursive, a bundle can contain any number of
sub-bundles. Note, all bundles are ‘descendents’ of the bundle ‘MAIN’. The primary
bundle of a bundle declaration, such as ‘e’, is an immediate child bundle of ‘MAIN’.
The following example is a more complex definition meant only to demonstrate the
recursive nature of a bundle declaration:

threads { s[11], { { u[34], v[3] } w[102] } t[7] [7] } z[100] ;

Execution
All operations that can be performed by the thread, ‘MAIN’ (i.e., any C code), may

be performed by any bundle of threads concurrently. The only operation supported by
ANS C, but not by aCe C is ‘goto’.

All code that is not labeled with the name of a bundle, by default, will be executed
by the lone thread ‘MAIN’. The program entry point routine ‘main’ is run by the
thread ‘MAIN’. To start code running on a bundle of threads other than ‘MAIN’, a
compound statement must be labeled with the name of that bundle. A compound
statement is code enclosed in braces, {}. A compound statement can contain any valid
aCe C code. The following code is a compound statement labeled with the bundle
name B:

B.{ a=b; }

This code copies the value at location ‘b’ to the location ‘a’, assuming ‘a’ and ‘b’
are declared storage locations associated with the bundle B. However, if a conditional
statement is executed from within the following labeled compound statement:

B.{ if(z) { a=b; } }

Some threads of ‘B’ will copy b to a and some will not, depending on whether ‘z’
was true or not, respectively. During the copy operation all threads for which ‘z’ is true
are said to be ‘active’, and all threads for which ‘z’ is false are said to be ‘inactive’.

aCe C Language Reference 5

Within the context of a segment of code for bundle ‘B’ all active threads of ‘B’ will
execute the code, while all inactive threads will remain idle. Initially, all threads of all
bundles are active, and each bundle will only execute code explicitly designated for that
bundle. Conditional statements are used to make some threads of a bundle inactive for
a portion of code.

A labeled compound statement creates an execution context in which a bundle of
threads may execute code. These execution contexts may be nested. In the following
example, all threads of B will copy ‘b’ to ‘a’, then all threads of A will copy ‘c’ to ‘d’,
and finally all threads of ‘B’ will copy ‘y’ to ‘x’:

B.{ a=b; A.{ d=c; } x=y; }

This would be equivalent to the following statement:
B.{ a=b; } A.{ d=c; } B.{ x=y; }

Then why would it be necessary for contexts to be nestable? It is only necessary for
contexts to be nestable if the execution of one context can implicitly affect the
execution of the other. This can happen if the contained context is contained within a
condition statement of the containing context, as in the following statement:

B.{ if (a) { A.{ x=y; } } }

In this example, if ‘a’ is true for any thread of ‘B’, then ‘y’ is copied to ‘x’ for all
threads of ‘A’. Otherwise, if ‘a’ is false for all threads of ‘B’, then ‘y’ will not be
copied to ‘x’ for any thread of ‘A’. Putting it another way, if any thread of B is active
within the context of A, then all threads of A will be active. The next example is a little
more complicated.

B.{ if (a) { A.{ x=y; } } else { C.{ s=t; } } }

As with the previous example, ‘x’ is copied to ‘y’ only if ‘a’ is true for at least one
thread of B. And ‘t’ is copied to ‘s’ if ‘a’ is false for at least one thread of B. An
interesting side effect of this statement is that ‘x’ will be copied to ‘y’ for all threads of
A and ‘t’ will be copied to ‘s’ for all threads of C as long as ‘a’ is true for some threads
and false for others.

Routines in aCe must be declared as to which bundle may call them. This is done
by preceding the routine’s declaration with the name of the bundle.

B int aroutine(int c, int b) { ... code ... }

The preceding routine, aroutine, may called within the context of any code executed
by ‘B’.

aCe C Language Reference 6

Communication
A conditional expression can also affect communications. Only active threads can

initiate a get or put operation. In the following statement, only threads of B for which
‘a’ is true actually fetch a value from the storage location ‘x’ of a thread of A:

B.{ if (a) { b=A[idx].x; } }

Again, only active threads of ‘B’ will fetch (or get) values from ‘A’. And in the
following statement, only active threads of ‘B’ will store (or put) values into threads of
A.

B.{ if (a) { A[idx].y = b; } }

Threads of ‘A’ need not be active to be fetched from or have their storage modified.
The following is an example of this:

A.{ if (z){ B.{ if (a) { A[idx].y = b; } } } }

Some threads of ‘A’ are made inactive; yet, it would execute no differently than the
previous example.

More on Concurrent Conditional Execution
As has already been pointed out, one can view conditional execution as the

deactivation of threads during conditional code that does not apply, rather than as the
action of skipping the execution of code that does not apply. Therefore, conditional
execution on a bundle of threads deactivates all threads for which the condition is false.
The inactive threads remain inactive until either the conditional structure is exited or
the threads are reactivated, as in the case of switch structures or loop-
continue combinations. A conditional statement only applies to the threads that
were active when the conditional statement was entered.

The if statement may deactivate some of the active threads until the corresponding
else is reached; then the original threads are restored and those that had been active
are deactivated. A loop structure (for, while, and do-while) deactivates more
and more of the active threads as the threads fail the loop condition. A break
statement deactivates all active threads until the corresponding loop or switch structure
has been exited. A continue statement deactivates all active threads only until the
current iteration of loop has been completed. A return statement deactivates all
active threads until all threads that entered the routine return or complete the routine.

A continue and break statement in C applies specifically to the control structure that
includes it. This applies also to aCe C; in addition, however, the control structure must
be executing within the same bundle context as the continue or break statement.

aCe C Language Reference 7

Similarly, return statements must belong to the same bundle context as the calling
routine.

Previously it was pointed out that a condition statement executed in one bundle
could implicitly affect the threads of another independent bundle. This can happen
between threads with common ancestry as well. A parent thread controls its children,
and children threads affect their parent. If a thread becomes inactive, all of its children
become inactive. And if all the children threads of a parent thread become inactive, the
parent thread also becomes inactive.

Thread Identification
Threads within a bundle are identified by system-defined constants. There are two

categories under which a thread can be identified: 1) globally among all threads of a
bundle and 2) within a dimension of a sub-bundle. There are three variables for each of
these categories: 1) the number of threads within the category, 2) the log of the number
of threads within the category (if the number is a power of 2), and 3) the sequential
identifier of the thread within the category. The following are the definitions of the
system constants:

$$Name - the name of the bundle of threads (char*).
$$D - the number of dimensions of the bundle.
$$N - the total number of threads in the bundle (over all sub-bundles).
$$L - the log base 2 of the total number of threads in the bundle (equals -1 if

$$N is not a power of 2).
$$i - the thread identifier of the thread with respect to all the threads of the

bundle.
$$ii - the physical thread identifier (where the thread is executing within an

architecture).
$$Nx[d] - the number of threads of d-th dimension of the bundle/sub-bundle.
$$Lx[d] - the log base 2 of the number of threads of d-th dimension of the sub-

bundle (equals -1 if $$Nx[d] is not a power of 2).
$$ix[d] - the thread identifier of the thread in d-th dimension of the bundle/sub-

bundle.

aCe C Language Reference 8

The following example uses the bundle description:

threads { B[2][2] } A[2];

A has 2 threads. In the diagram below, there is a pair of numbers under each A. The
first number is its value for $$i, and the second is its value for $$ix[0]. There is a
triplet under each thread of B. The first number is its value of $$i, the second is its
value of $$ix[1], and the third is its value of $$ix[0]. Note that the threads of ‘B’ form
two sub-bundles, one under A[0] and another under A[1]. A sub-bundle consists of all
the threads of a bundle that have the same parent thread (contained in the parent
bundle.) For example, ‘A’ is the parent bundle of ‘B’ and B[4], B[5], B[6], and B[7]
make up a sub-bundle of ‘B’ whose parent thread is A[1] of bundle ‘A’ .

0 0 0 1 0 1

2 1 0 3 1 1

B

B B

B

A
0 0 1 1

A

B

B

B

B

4 0 0

6 1 0

5 0 1

7 1 1

The value of the other system constants of A are:

$$NAME = "A", $$D = 1, $$N=2, $$L=1,

$$Nx[0]=2, $$Nx[1]=<undefined>,

$$Lx[0]=1, and $$Lx[1]=<undefined>.

The values of the other system constants of B are:

$$NAME = "B", $$D = 2, $$N=8, $$L=3,

$$Nx[0]=2, $$Nx[1]=2,

$$Lx[0]=1, and $$Lx[1]=1.

I/O

I/O is defined as an order sequence of data that is to be placed in a file. The data
can be placed in the file concurrently, but the order within the file will be properly
ordered sequentially. I/O in aCe is in order of thread identifier, as in the following
example:

aCe C Language Reference 9

threads CLX3[1000]

CLX3.{ int A; A=$$i; fwrite(&A,sizeof(int),1,FILEptr); }

The thousand values A will be written to the file whose descriptor is located at
FILEptr. If the above code is contained within a conditional statement, only a subset
of the values of A, corresponding to the active threads, will be written to the file.

threads CLX3[1000]

CLX3.{ int A; A=$$i;

if ($$i<4 || $$i>995)

fwrite(&A,sizeof(int),1,FILEptr);

}

The above code segment will write eight values into the file, four from the first four
threads of CLX3 and four from the last four threads of CLX3 in that order.

aCe has another form of I/O, it is called fast I/O. The fast I/O routines ffopen,
ffread, ffwrite, and ffclose correspond to the standard I/O routines fopen, fread, fwrite,
and fclose, except that their use is very machine dependent. Files written by fast I/O
must be read by fast I/O. Also, files written with fast I/O must also be read by a bundle
with exactly the same geometry as the bundle that wrote it. The reason for this is that
fast I/O is intended to be implemented with the fastest form of I/O available on the
architecture, which may differ from architecture to architecture.

Communications Path Descriptions
Communication between two threads is defined by a communication expression. A

communication expression consists of two parts: the communication path description or
router expression, and the remotely evaluated numeric expression. In the case of a
fetch, the remotely evaluated numeric expression must evaluate to a value, while in the
case of a send operation, it must evaluate a remote address. The router expression is
used to define many concurrent communication paths from threads of one bundle to the
threads of another, or even to the same bundle.

In the following example, "B[0]." is the router expression, (s+1) is the
remote expression that is executed on the threads of B, and t is the variable in each of
the threads of type A to which the values received from the threads of type B are stored.

threads A[1]; threads B[1];

A.{ int t; B int s; t = B[0].(s+1); }

aCe C Language Reference 10

The threads of B need not be currently active to evaluate the expression (s+1).
However, a thread of B does need to be a thread that will be fetched from for the
expression to be evaluated. Though a thread may have mainly threads fetching from it,
the expression will only be evaluated once. In effect, this technique can be used to
temporarily reactivate threads.

The router expression describes the path between the remote execution context and
the local execution context. If the router expression is the source of a value (a get or
fetch operation), the remote context computes a value, and that value is fetched by the
local context from the remote thread that is described by the router expression. The
previous example demonstrates communications between two single-thread bundles.
When multi-thread bundles communicate, each thread of the local context computes an
address of a remote thread. This address is based on the router expression. If we
modify the above example, we see below that each thread of the local bundle A fetches
from the corresponding thread of the remote bundle B. Note that the system constants
$$i, which belong to the threads of A, is be used to cause the threads of A to fetch
from the corresponding threads of B. This can be viewed as explicitly computing
relative thread addresses.

threads A[16]; threads B[16];

A.{ int a; B int b; a = B[$$i].(b+1); }

Values may be fetched from existing, and yet not necessarily active, threads. If an
attempt is made to fetch from a non-existent thread, the result is undefined, possibly
due to an incorrectly computed thread identifier. If values are to be fetched from
inactive threads, they are temporarily made active. In general, a get operation activates
all threads that will be fetched from and deactivates threads that will not be fetched
from for the duration of the remote context’s execution no matter what the active state
of the remote context was prior to the communication. In the above example, (b+1) is
the remote context for the get operation. In the following example, the router
expression will generate invalid addresses for some local threads, therefore a
conditional is used to make sure that only valid thread addresses are fetched.

threads E[16]; threads F[16];

E.{ int a; F int b;

if ($$i+2<16) a = F[$$i+2].(b+1); }

aCe C Language Reference 11

There are four types of path descriptions: absolute addressing, universal addressing,
relative addressing, and reduction addressing Absolute addressing assumes the path
description starts at MAIN and proceeds down the tree to the remote thread. Given:

threads { { G[2], H[3] } A[1], B[2] } C[3] ;

MAIN

C C C

A B B A B B A B B

GGHHH GGHHHGGHHH

To locate the value of (b+1) referenced in the statement below we traverse the
graph from MAIN to the xth thread of C. From this node, we then proceed to the yth

thread of B. Note that x and y may have a different value for each thread of H and that
the path for each thread of H is to a different thread of B.

H.{ int a,x,y; B int b; a = C[x].B[y].(b+1); }

The following diagram shows the highlighted path for an thread of H where x=1
and y=0:

MAIN

C C C

A B B

GGHHH GGHHHGGHHH

A B BA B B

Universal addressing is like absolute addressing but need not start at a child of
MAIN. Universal addressing treats all threads of a bundle as if they were contained in
a single one-dimensional bundle. For example, in the following code, threads of G are
children of threads of K, which are children of threads of J:

threads { { G[3][4] } K[5][7] } J[3][6][7] ;

J.{ int a,x; G int b; K[x].G[1][2].b = a; }

aCe C Language Reference 12

Data of threads of J need to be sent to threads of G, which are not children of that
thread of J. However, each thread of type J contains the value of the ID, x, of the
thread of K that is the parent of the thread of G where the data is to be sent. Thus, the
value of x is used as the index into the one-dimensional array of threads of K as the
starting point of the path. The rest of the path is treated as if it were absolute
addressing.

Relative addresses are computed with respect to the local thread's and/or its parent's
address. If a non-parent is in the path description, the address calculation with respect
to the non-parent will be calculated as an absolute address.

A relative router expression is prefixed with a period (.) and is assumed to start at
the local thread's bundle or one of its parents. The following is an example of a path
from a thread of H to a thread of B.

H.{ int a,x,y; B int b; a = .A.C[x].B[y].(b+1); }

The following diagram shows the highlighted path to fetch a remote value from a
thread of B (C[0].B[1]) to a local thread of H (C[2].A[0].H[1]) using
relative addressing where x=1 and y=1:

MAIN

C C C

GGHHH GGHHHGGHHH

A B BA B BA B B

The address of C[x] is calculated relative to the parent bundle of the H thread
modulo the number of threads of C. Yet, B[y] is treated as an absolute address rather
than relative since B is not a parent of H. The bundle A specification does not have an
array index because it is not needed. Parents of the local thread do not need indices if
they are specifying the path up the bundle hierarchy toward MAIN. Relative path
calculations are done modulo the size of the dimensions of the sub-bundle, thus
toroidally connecting the sub-bundle's threads. Actually, it was unnecessary to specify
the bundle A in the router expression since C is a grandparent of H. The expression
could have been written, ".C[x].B[y]".

Reduction addressing can be viewed as all-to-all communications. Every thread of
the source bundle sends a value to every thread of the destination bundle. This mode of

aCe C Language Reference 13

addressing is useful as well as efficient for performing global reductions. It is also
efficient if a value is needed from the threads of a bundle by the threads of another if
the value is the same for all threads. Reduction addressing is performed by designating
the name of the bundle from which a value is to be reduced.

threads H[100]; threads B[300][400];

H.{ int a; B int b=z; a = B.b ; }

In the above example note the expression "a=B.b". Although B is a two-
dimensional thread array, the path from B is designated by its name alone and no
indices. The expression will get the value of b of the active thread of B with smallest
ID value and distribute it to a of all the active threads of H. The next example is
functionally equivalent to the previous, except that the values of b are being sent to a
rather that being fetch by H and assigned to a.

threads H[100]; threads B[300][400];

B.{ H int a; int b=z; H.a = b ; }

Global reductions can be performed by this addressing mode by replacing the =
with operations such as +=. In this case, the values b of all active threads of B are
summed and added to a of all threads of H.

threads H[100]; threads B[300][400];

B.{ H int a; int b=z; H.a += b ; }

Global reductions are limited to the following operations: addition (+=),
subtraction (-=), and (&=), or (|=), exclusive-or (^=), minimum (<?=), and maximum
(>?=).

Put and Get

Data is fetched from or sent to the threads of a remote bundle depending on whether
the router expression is on the right or left side of an assignment. If the router
expression is on the right side of an assignment, it is a get from the remote threads. If
the expression is on the left side of an assignment, it is a put to the remote threads.

The following is an example of a get operation:

H.{ int a,x,y; B int b; a = .A.C[x].B[y].b ; }

Reversing the sides of assignment makes it a put operation:

H.{ int a,x,y; B int b; .A.C[x].B[y].b = a; }

aCe C Language Reference 14

The value of a in H is sent to the specified remote thread b of B. If a reduce add
operation such as,

H.{ int a,x,y; B int b; .A.C[x].B[y].b += a; }

is performed and multiple values are sent to the same thread, they are summed together.
Since more than one thread can send to the same thread, the data will either have to be
combined, or some will be lost. Therefore, when data is sent to another thread, there
are several options for combination into the remote location, such as addition (+=),
subtraction (-=), multiplication (*=), division (/=), and (&=), or (|=), exclusive-or (^=),
minimum (<?=), and maximum (>?=).

A put operation returns a flag to the expression in which it is contained, rather than
a value. This flag indicates whether or not the value being sent actually was received at
the destination thread.

H.{ int a,x,y; B int b; flag=(.A.C[x].B[y].b = a) ; }

In the above example, the values of a in bundle H are being sent to the variables b in
bundle B. The value of the flag, after the values have been sent, is TRUE if the specific
value of a actually reached the requested instance of b and FALSE if it did not. There
are two reasons a value may not reach its destination: 1) the address of the destination
thread is not a valid one, or 2) the put operation is '='. If the put operation is '=', at most
one value will be received by any destination thread. Therefore, only one of the source
threads that sent to the same destination thread will have its value received and its
receive flag set to TRUE.

Pre-computed Paths

A fair amount of time spent in a communications operation may be spent computing
the identifiers of the remote threads involved in the communications. The ability to
define a path description as a variable that is computed at run time allows a path
description to be pre-computed and optimized once, and yet used many times. This
amortizes the cost of computing a path descriptor across multiple uses of the descriptor.
A path is declared as follows:

H.{ path(B) toB; int a0,a1,a2,x,y; B int b0,b1,b2;

toB = C[x].B[y]. ;

@toB.b0 = a0 ; @toB.b1 = a1 ; @toB.b2 = a2 ; }

aCe C Language Reference 15

The path toB is a path from the local context of H to the remote context of B.
Note in the above example, toB was computed once but was used in three
communications operations. Pointers to or arrays of paths may also be declared.

H.{ path(B) toB[4]; @toB[1].b1 = a1 ; }

H.{ path(B) *toB; @(*toB).b1 = a1 ; }

Note, an array element from a path array need not be enclosed in parentheses when
used, but a pointer to a path or any address expression that points to a path does.

A reduction description can not be assigned to a path. Any other path description
can be (absolute, universal, or relative).

Generic Routines

Most routines are specific to only one bundle. Some, however, are useful to many
bundles. These are referred to as generic routines. A generic routine is declared by
preceding it with the key word generic in place of a specific bundle name.
Trigonometric functions are examples of such routines. There is nothing about a sine
function, for example, that makes it inherently specific to any bundle. A sine function
can be applied to all threads of a bundle and is trivially parallel (i.e., requires no
communication between threads.) This makes it a simple generic routine, and allows it
to be executed within the context of any bundle. An example of a simple generic
routine is:

generic double sin (double x) { ... C code ... }

Generic routines can include inter-processor communication. These are complex
generic routines. A complex generic routine can have a bundle as an argument. To
pass a bundle into a generic routine other than the bundle of the context, one prefixes
the argument with the key word generic.

generic double func (

generic(other),

double x,

other int y)

{ int a,b; other int c,d; a = other[b].d; }

aCe C Language Reference 16

The bundle passed into the routine is other. Note that variables, x, a, and b,
belong to the context bundle and variables y, c, and d, belong to the bundle passed in
as other.

To pass a bundle description into a complex generic routine, the bundle name is the
argument.

threads A[200]; threads B[400];

A.{ double a,b; B int c; a = func(B,b,c); }

Function func is called by bundle A and is passed the bundle B. Note that b is a
variable of bundle A and c is a variable of bundle B.

A generic or a "argument passed" bundle can have multiple dimensions. The
dimensions’ sizes may either be specified as in case 1 or unspecified as in case 2. Case
1 will only allow bundles with dimensions [2][500][30] to be passed as an argument,
while case 2 will allow any three-dimensional bundle to be passed. A bundle being
passed as an argument must have the same number of dimensions as the generically
declared bundle.

Case 1:
generic(other[2][500][30])

Case 2:
generic(other[][][])

If the generically declared bundle does not specify any dimensions, then a bundle
with any number of dimensions may be passed, but it will be treated as a one-
dimensional bundle. The index value of this array may range from 0 to $$N-1 of the
bundle.

A generically declared bundle may also specify the child bundles it must have to be
passed. All bundles of the passed bundle must have at least as many child bundles and
the same number of dimensions as the argument bundle. Also, the dimensions’ sizes
must be specified and have the same values. For case 3, A and C are valid passed
bundles for OTHER, bundles B, D, and E are not.

threads { a[2], b[4][6] } A[200];

threads { d[2], e[5][6] } B[400];

threads { f[2], g[4][6], h[5] } C[300];

aCe C Language Reference 17

threads { j[2], k[4], m[5] } D[300];

threads { n[2], p[5], q[4][6] } E[300];

Case 3:
generic({ y[2], z[4][6] } OTHER)

A is an exact match. B is invalid because e does not have the same dimension size.
C is valid even though it has three children. The third child is simply ignored since f
matches y and g matches z. D is invalid because k has only one dimension. E is
invalid even though children of the right size exist they are not the first two children of
E.

The context bundle of the function may also be passed in the routine by name. This
is done using the same syntax as declaring a bundle to be passed by argument except it
replaces the keyword ‘generic’ preceding the routine declaration as in Case 4.

Case 4:
generic ({ y[2], z[4][6] } OTHER) double Func (double x) { ... C code ... }

In Case 4 the context bundle in which ‘Func’ is called must be of the form of
OTHER, as if it were a passed bundle. Without this capability, the context bundle
would not be able to be referenced explicitly. This is not a problem with functions like
trigonometric functions that require no inter-thread communications. But it would be
for, say, a generic FFT routine. Any bundle that has been explicitly declared as a
bundle argument or a generic bundle context may be used within the context of the
function as any bundle specification can be used.

Realignment of Threads with Processors
If no realignment is specified for a bundle of threads, they will be distributed across

the physical processors in a default manner specific to the given architecture. This
often does not represent a very effective arrangement given the communications
patterns of a specific algorithm. The realignment statement allows for the
rearrangement of the threads across the physical processors relative to the default
arrangement.

Actual threads are mapped across physical processors in an order dependent on the
architecture. For example, an aCe program running on a PC cluster running MPICH as
its message passing protocol may distribute threads in the following manner: given that

aCe C Language Reference 18

there are ‘n’ threads to be distributed over ‘p’ processors and ‘d=n/p’, the first ‘d’
threads will be allocated to the first processor, the second ‘d’ threads to the second
processor, and so on until all threads have been allocated. If ‘n’ is not evenly divisible
by ‘p’, then ‘d=n/p+1’ and the last processor will have ‘n mod p’ threads.

The idea of realignment is to re-map the logical thread identifier to a different
physical thread identifier. The constant $$i is the logical thread identifier, and $$ii is
the physical thread identifier. If the threads of a bundle are not realigned, then $$i will
be equal to $$ii for all threads in the bundle.

Rearrangement is the permuting of logical thread relative to a fixed arrangement of
physical threads. In its simplest form, this is done by defining an array of logical
threads and permuting the dimension of the array. For example, if you have a two-
dimensional array and you swap the two dimensions, this is equivalent to performing a
transpose on the elements of the array. The following example shows how a transpose
array of logical threads is defined:

threads X[32][32];

realign X [32][32] --> [32][32] ; [0] --> [1] ; [1] --> [0] ;;

Realignment is described by a realignment descriptor statement. (Refer to the
preceding example of the bundle ‘X’.) The realignment keyword is ‘realign’. It is
followed by the name of the bundle to be realigned. Next is two sets of dimensions
separated by an arrow (-->). The first set of dimensions describes an array that
represents how the logical identifiers are to be viewed. And the second represents how
the physical identifies are to be viewed. In this example, both the logical and the
physical identifiers are represented by a 32x32 array of threads. Following the array
definitions are the mappings. These mappings map one or more logical dimensions to
one or more physical dimensions. In this case, there are two mappings, each consisting
of one logical dimension mapped to one physical dimension. The first mapping maps
the least significant logical dimension to the most significant physical dimension. The
second mapping maps the most significant logical dimension to the least significant
physical dimension. This realignment effectively transposes the logical arrangement of
threads relative to the physical arrangement. This realign statement is equivalent to:

realign X [32][32] --> [32][32] ; [0][1] --> [1][0] ;;

The following example, uses C-like code to show how logical threads are mapped
to physical threads:

aCe C Language Reference 19

threads X [27][10];

realign X [6][9][5] --> [9][5][6] ;

[0] --> [1] ; [1] --> [2] ; [2] --> [0];;

The above realignment description refers to a physical array of threads which could
be represented by P[9][5][6] and a logical array of thread represented by L[6][9][5].
The above dimension mapping describes how to change the ordering of the dimensions
of a multi-dimensional array (a generalized multi-dimensional transpose). This
description is equivalent to the following C-like code describing the mapping of
physical threads to logical threads:

int L[6][9][5], P[9][5][6];

for (I2=0; I2<6; I2++) {

for (I1=0; I1<6; I1++) {

for (I0=0; I0<6; I0++) {

L[I0][I2][I1] maps_to P[I2][I1][I0] ;

}}}

This simple form of the alignment statement allows for any form of multi-
dimensional array transposing relative to the default arrangement. The next form that
will be described allows for changing from an array with one number of dimensions to
one of a different number of dimensions:

threads Y[100][100];

realign Y [100][100] --> [10][25][20][2] ;
[0][1] --> [1][3][2][0] ;;

In the above case, the logical array is define as a two-dimensional array, 100x100,
and the physical array is a four-dimensional array of dimensions [10][25] [20][2]. The
mapping (that follows the array declaration) says map the transpose of the logical array
to an array of the physical thread whose dimensions have been reordered to be
[20][10][25][2]. This mapping statement appears to request the reordering of the
physical threads. In reality, however, the physical threads will remain in the default
order, and only the logical threads will be reordered so that mapping from logical to
physical is consistent with the mapping statement.

Note that the original and the final arrays of threads are the same size. This is not
necessary. If the physical thread array size is larger than the logical, the array is padded
with inactive threads that never become active. If the logical array is larger than the
physical array size, then the final array descriptor is given an additional most

aCe C Language Reference 20

significant dimension large enough to make the physical array just larger than the
logical.

threads Y[100][100];
realign Y [100][100] --> [32][32] ; [1][0] --> [0][1] ;;

In the above example, the alignment statement is effectively equivalent to:

realign Y [100][100] --> [10][32][32] ;
[1][0] --> [2][0][1] ;;

There is one final form of the alignment state. The realignment description
describes not only how an array may be rearranged or reformed into another array, but
it can also be used to describe how sub-arrays may be reformed into different sub-
arrays. An alignment statement may consist of multiple mappings that reorder subsets
of the dimension, some of which have no explicitly defined size.

threads Z[640][480];

realign Z [640][480] --> [][][64][32] ;
[1] --> [3][1]; [0] --> [2][0] ;;

The compiler will fill in the blank sizes. Dimensions with blank sizes may only be
used as most significant dimensions in a mapping array. The compiler will translate the
above realignment statement into the following:

realign Z [640][480] --> [10][15][64][32] ;
[1] --> [3][1]; [0] --> [2][0] ;;

For realignment to be of significant usefulness, the programmer will need to find
out what the default arrangement of threads are for the specific physical architecture he
wants to realign a bundle to.

The Virtual/Scalar Distinction

So far, the programmer has been presented with a view of a variable declared over a
bundle as having an independent value for every thread of that bundle. This can lead to
extreme inefficiency of both memory and compute cycles if implemented to its logical
conclusion. The aCe language is designed to maintain the totally virtual illusion but is
implemented in a way that takes advantage of variables that have the same value in
every thread (a scalar value). This is done by recognizing variables that are assigned
only constants or other scalar variables. These variables are designated as 'scalar'.
Most other variables are designated as 'virtual'. It would not be necessary to make the
programmer aware of this in general except for the fact that aCe interfaces with the

aCe C Language Reference 21

native programming environment. The routines developed under the native
programming environment expect parameters and return values of specific types, either
scalar or virtual, but not both. Therefore, when a native code routine is declared within
aCe, the arguments and parameters must be explicitly designated as either scalar or
virtual. Appendix A contains examples of the usage of the keywords scalar and
virtual.

Appendix A: Current Standard aCe Library Calls

A.1 Assert (see assert.aHr).
(The libraries for 'assert' are not currently implemented.)

A.2 ctype (see ctype.aHr).

generic int isalnum (int c);
generic int isalpha (int c);
generic int iscntrl (int c);
generic int isdigit (int c);
generic int isgraph (int c);
generic int islower (int c);
generic int isprint (int c);
generic int ispunct (int c);
generic int isspace (int c);
generic int isupper (int c);
generic int isxdigit (int c);
generic int tolower (int c);
generic int toupper (int c);

A.3 Error Number (see errno.aHr).
(The libraries for 'errno' are not currently implemented.)

A.4 Locale Routines (see locale.aHr).
(The libraries for 'locale' are not currently implemented.)

A.5 Math Routines (see math.aHr)

generic double cos (double x);
generic double sin (double x);
generic double tan (double x);
generic double acos (double x);

aCe C Language Reference 22

generic double asin (double x);
generic double atan (double x);
generic double atan2 (double x, double y);
generic double sinh (double x);
generic double cosh (double x);
generic double tanh (double x);
generic double exp (double x);
generic double log (double x);
generic double log10 (double x);
generic double frexp (double value, int *exp);
generic double ldexp (double x, int e);
generic double modf (double value, double *iptr);
generic double pow (double base, double exp);
generic double sqrt (double x);
generic double floor (double x);
generic double ceil (double x);
generic double fmod (double x, double y);
generic double fabs (double x);

A.6 Scan Functions (see scan.aHr).

generic int scan_and (int V, char M) ;
generic int scan_or (int V, char M) ;
generic int scan_xor (int V, char M) ;

generic int scan_add (int V, char M) ;
generic float f_scan_add (float V, char M) ;
generic double d_scan_add (double V, char M) ;

generic int scan_min (int V, char M) ;
generic float f_scan_min (float V, char M) ;
generic double d_scan_min (double V, char M) ;

generic int scan_max (int V, char M) ;
generic float f_scan_max (float V, char M) ;
generic double d_scan_max (double V, char M) ;

A.7 Set Jump (see setjmp.aHr).
(The libraries for 'setjmp' are not currently implemented.)

A.8 Signals (see signal.aHr).
(The libraries for 'signal' are not currently implemented.)

aCe C Language Reference 23

A.9 Standard Arguments (see stdarg.aHr).
(The libraries for 'stdarg' are not currently implemented.)

A.10 Standard I/O (see sdtio.h).

generic scalar FILE* fopen
(scalar char *filename, scalar char *mode)

;
generic scalar int fflush (scalar FILE* stream) ;
generic scalar int fclose (scalar FILE* stream) ;

generic scalar int fread
(virtual void *virtual ptr,
scalar size_t size, scalar size_t nobj,
scalar FILE* stream) ;

generic scalar int fwrite
(virtual void *virtual ptr,
scalar size_t size, scalar size_t nobj,
scalar FILE* stream) ;

generic virtual int printf
(scalar char * scalar format, virtual ...)

;
generic virtual int sprintf (virtual char *virtual buff,

scalar char * scalar format, virtual ...) ;
generic virtual int fprintf` (scalar FILE *scalar file,

scalar char * scalar format, virtual ...) ;

A.11 Standard Library (see stdlib.aHr).

generic double atof (const char* s);
generic int atoi (const char* s);
generic long atol (const char* s);

generic double strtod
(const char* s, char** endp);

generic long strtol
(const char* s, char** endp, int base);

generic unsigned long strtoul
(const char* s, char** endp, int base);

generic scalar void abort (void);
generic scalar void exit (scalar int status);

generic int abs (int n);

aCe C Language Reference 24

generic long labs (long n);
generic div_t div (int num, int denom);
generic ldiv_t ldiv (long num, long denom);

A.12 String Routines (see string.aHr).

generic char* strcpy (char* s, char* ct);
generic char* stnrcpy (char* s, char* ct, int n);
generic char* strcat (char* s, char* ct);
generic char* strncat (char* s, char* ct, int n);
generic int strcmp (char* cs, char* ct);
generic int strncmp (char* cs, char* ct, int n);
generic char* strchr (char* cs, char c);
generic char* strrchr (char* cs, char c);
generic size_t strspn (char* cs, char* ct);
generic size_t strcspn (char* cs, char* ct);
generic char* strpbrk (char* cs, char* ct);
generic char* strstr (char* cs, char* ct);
generic size_t strlen (char* cs);
generic char* strerror (int n);
generic char* strtok (char* s, char* ct);

generic void* memcpy (void* s, void* ct, int n);
generic void* memmove (void* s, void* ct, int n);
generic int memcmp (void* cs, void* ct, int n);
generic void* memchr (void* cs, int c, int n);
generic void* memset (void* s, int c, int n);

A.13 Time Routines (see time.aHr).
(The libraries for 'time' are not currently implemented.)

References

1. Dorband, J.E., "MPP Parallel Forth", Proceedings of the First Symposium on the
Frontiers of Massively Parallel Scientific Computation, pg. 211-215, 1986.

2. Hamet, L.E., Dorband, J.E., “A generic fine-grained parallel C”, Proceedings of the
Second Symposium on the Frontiers of Massively Parallel Computation, October
1988, Fairfax, VA, pp 625-628.

3. Iverson, K.E., A Programming Language, Wiley, New York, 1962.

4. Reeves A.P., Bruner J.D., The Language Parallel Pascal and other Aspects of the
Massively Parallel Processor, School of Electrical Engineering, Cornell University,
December 1982.

aCe C Language Reference 25

5. Rose, J., Steele, G., "C*: An Extended C Language for Data Parallel
Programming", Presented at the Second International Conference on
Supercomputing, May 1987.

6. Steele, G., Wholey, S., "Connection Machine Lisp: A Dialect of Common Lisp for
Data Parallel Programming," August, 1987.

7. DAP-FORTRAN Language, International Computers Ltd., TP 6918.

8. MPL (MasPar Programming Language) Reference Manual, MasPar Computer
Corp., Pt No. 9300-9034-00 Rev A2.

